Choosing machine learning models

Transform business strategies with advanced india database management solutions.
Post Reply
aminaas1576
Posts: 563
Joined: Mon Dec 23, 2024 3:21 am

Choosing machine learning models

Post by aminaas1576 »

The Hugging Face Hub is a central repository which provides access to open source machine learning models, datasets and demos. Currently, the Hugging Face Hub has over 150,000 openly available machine learning models covering a broad range of machine learning tasks.

Rather than relying on a single model that may not be comprehensive enough, we’ll select a series of models that suit our particular needs.

A screenshot of the Hugging Face hub task navigator presenting a way of filtering machine learning models hosted on the hub by the tasks they intend to solve. Example tasks are Image Classification, Token Classification and Image-to-Text.
A screenshot of the Hugging Face Hub task navigator presenting a way of filtering machine learning models hosted on the hub by the tasks they intend to solve. Example tasks are Image Classification, Token Classification and Image-to-Text.

Working with image data
ARCH currently provides access to 16 different “research ready” datasets generated from web archive collections. These include but are not limited to datasets containing all extracted text from the phone number library web pages in a collection, link graphs (showing how websites link to other websites), and named entities (for example, mentions of people and places). One of the datasets is made available as a CSV file, containing information about the images from webpages in the collection, including when the image was collected, when the live image was last modified, a URL for the image, and a filename.

Screenshot of the ARCH interface showing a preview for a dataset. This preview includes a download link and an “Open in Colab” button.
Screenshot of the ARCH interface showing a preview for a dataset. This preview includes a download link and an “Open in Colab” button.

One of the challenges we face with a collection like this is being able to work at a larger scale to understand what is contained within it – looking through 1000s of images is going to be challenging. We address that challenge by making use of tools that help us better understand a collection at scale.
Post Reply